21 век |

Строительство космического лифта

Идея космического лифта будоражит умы человечества уже многие годы, с момента, когда в 1895 году русский ученый Константин Циолковский первым сформулировал понятие и концепцию. Вдохновленный недавно построенной Эйфелевой башней, он описал отдельно стоящее сооружение уходящее от уровня земли до геостационарной орбиты. Возвышаясь на 36 000 км над экватором и следуя в направлении вращения Земли в конечной точке с орбитальным периодом ровно в один день эта конструкция сохранялась бы в фиксированном положении.

Ряд более подробных предложений появлялись в середине и конце 20-го века, с момента старта космической гонки, и в то время, когда пилотируемые полёты на орбиту Земли становились все более и более обыденными событиями. Возлагались надежды, что космический лифт мог бы резко сократить затраты выхода на орбиту Земли, сделав революцию в доступе к околоземному космическому пространству, к Луне, Марсу и даже далее. Однако стартовые инвестиции и уровень необходимых технологий ясно давали понять, что такой проект нецелесообразен и отводили ему место в области научной фантастики.

В первые десятилетия 21-го века, к концепции стали подходить более серьезно, так как уже тогда были достигнуты технологии по созданию материалов из углеродных нанотрубок. Это протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров, которые можно «сплетать» в нити неограниченной длины; материал с достаточно высокой прочностью и достаточно низкой плотностью для создания кабеля космического лифта. Однако, в начале 21 века они могли быть произведены только в крайне малых масштабах. В 2004 году рекордная длина одностенных нанотрубок составила всего 4 см. Эта технология весьма перспективна, и были необходимы дальнейшие исследования для совершенствования производственного процесса.

Понадобилось несколько десятилетий исследований для разработок новых процессов синтеза углеродных нанотрубок. Подобное открытие произошло ориентировочно в 2040-х годах и совершило революцию в области машиностроения и строительства. С возможностью «сплетать» длинные нанотрубки, человечество получило материалы с максимальной прочностью, в сотни раз прочнее стали. Кроме многих других сфер применения, становится доступной технология сооружения космического лифта. Требуемая прочность в 130 ГПа (гигапаскалей) достигнута, но проблемы проектирования оставались – как нейтрализовать опасные вибрации в кабеле, вызванные гравитационным притяжением от Луны и Солнца, наряду с давлением, возникающими порывами солнечного ветра.

Основные правовые и финансовые трудности также должны были быть преодолены. Требовались международные соглашения по безопасности полетов, авиационной безопасности и предоставления компенсации в случае несчастного случая или террористических инцидентов. Работа страхового механизма вызывает особую обеспокоенность, учитывая потенциал масштабов катастрофы, если что-то пойдёт не так. В промежуточный период, были построены меньшие по размеру экспериментальные сооружения, демонстрирующие основные концепции на более низких высотах. В конечном итоге это проложило дорогу к значительно более крупным конструкциям, нежели современные постройки начала 21 века.

В конце 2070х, после 15 лет активного строительства, космический лифт, простирающийся от поверхности Земли до геостационарной орбиты стал полностью работоспособным. Строительный процесс включал в себя размещение космических аппаратов в фиксированном положении на 35,786 км над экватором, с отведённым постепенно расширяющийся вниз к Земле тросом. Также трос проложен вверх от этой точки – более чем на 47 000 км, где объекты могут избежать силы притяжения Земли. На внешнем конце расположен большой противовес, чтобы держать трос натянутым. Французская Гвиана, Центральная Африка, Шри-Ланка и Индонезия – места, которые наиболее пригодны в качестве наземной точки отправления.

Как и в большинстве видов транспорта и инфраструктуры конца 21-го века, космический лифт управляется системами и программами на базе искусственного интеллекта, которые постоянно комплексно следят и поддерживают структуру. В случае необходимости, роботы могут быть направлены на исправление проблем в кабельной сети или других компонентах лифта на всём протяжении от уровня земли до холодного вакуума в космосе. Системы редко используются в полную силу, однако, это самые эффективные механизмы обеспечения безопасности в конструкции.

Благодаря космическому лифту человечество начнёт переживать новый крупный космический бум, так как люди и груз могут быть доставлены на орбиту со значительно более низкими затратами по сравнению с традиционными запусками ракет-носителей. Более 1000 тонн материала могут быть подняты с помощью лифта за один день, это больше чем вес Международной Космической Станции, для строительства которой потребовалось более десяти лет в начале века.

Хотя и подъём занимает довольно много времени по сравнению с ракетами, он происходит намного плавнее, без высоких перегрузок и без использования взрывчатых веществ. При выходе из атмосферы и достижения низкой околоземной орбиты, между 160 и 2000 км, груз или пассажиры могут переключиться на собственную орбиту вокруг Земли. Кроме того, они могут выйти из геосинхронной орбиты, двигаясь на достаточной скорости, чтобы уйти от притяжения Земли и продолжить путешествие дальше, в более удаленные места, например к Луне или Марсу.

В последующие десятилетия дополнительные космические лифты станут функционировать за пределами Земли: на Луне, Марсе и других уголках Солнечной системы, с развитием технологий стоимость нанотрубок будет снижаться вместе с техническими рисками. Более того, строительство будет более удобным, благодаря низкой гравитации: 0,16 g на Луне и 0,38 g на Марсе.

Больше…

Достижения в области космических путешествий и туризма

К концу 21 века границы освоения человеком космоса смещаются с Луны, Марса и внутренней Солнечной системы к более отдаленным местам во внешней Солнечной системе.

Национальное управление по аэронавтике и исследованию космического пространства (НАСА), образованное в 1958 году, продолжает функционировать спустя 120 лет. Однако, финансирование агентства в настоящее время ничтожно мало по сравнению с финансированием частного сектора, который превратил космос в многомиллиардную индустрию.

Стоимость запуска людей и грузов в космос существенно снизилась за последнее столетие. По сравнению с 85 000 долларов за килограмм сто лет назад, сейчас это меньше доллара за килограмм. Это означает, что даже люди с относительно низкими доходами имеют доступ на околоземную орбиту – благодаря новому поколению ракет и космических самолетов, а также недавнему развитию космического лифта. Поэтому базовые орбитальные круизы воспринимаются большинством людей как нечто само собой разумеющееся и рассматриваются во многом так же, как дальний полет на самолете для посещения известной достопримечательности; то, что многие люди делают раз в несколько лет. Для тех, кто побогаче, доступны поездки вокруг Луны, а также длительное пребывание в ряде частных отелей в космическом пространстве цислунар (внутри лунной орбиты).

Для более предприимчивых и богатых возможны экскурсии и экспедиции с гидом по лунной поверхности. Кроме того, всё, что длиннее простого тура, требует самоотдачи и подготовки, что означает, что это часто считается довольно экстремальным видом досуга, сродни альпинистам или глубоководным дайверам прошлого. Среди наиболее популярных туристических направлений-посадочные площадки Аполлона, которые были окружены ограждением по периметру и включены в список объектов Всемирного наследия ЮНЕСКО. Помимо этих туристических мест есть много областей, представляющих геологический интерес, которые посещают исследователи и учёные, стремящиеся занять своё место в учебниках истории.

Марс обрёл человеческое присутствие несколькими десятилетиями ранее. За первой постоянной базой последовала другая, затем еще одна. К 2078 году население, инфраструктура и самодостаточность выросли до такой степени, что Марс скоро будет готов провозгласить независимость. Водоснабжение, продовольствие и энергоснабжение обеспечиваются за счет все более широкого использования робототехники и общей автоматизации. Первоначально предназначенные для ученых и других исследователей, эти станции в настоящее время испытывают постоянный приток обычных граждан, стремящихся покинуть Землю и начать новую жизнь на Красной планете.

В дополнение к местам обитания на Луне и Марсе, большое и постоянно растущее число горных работ сосредоточено вокруг околоземных объектов, астероидов главного пояса и других, некоторые из которых находятся ещё дальше далеко, например в Троянских астероидах Юпитера. Они обеспечивают изобилие ранее редких металлов и минералов, что привело к резкому падению цен на некоторые товары. Операции почти полностью автоматизированы и контролируются мощным искусственным интеллектом, практически не требующим участия человека. В настоящее время они обеспечивают готовым источником топлива сеть космических заправочных станций – например, из разделения воды на водород и кислород – которые позволяют совершать более длительные, дешевые и быстрые полёты.

Поскольку большая часть внутренней Солнечной системы в настоящее время является домом для процветающей экономики, внимание обратилось на неиспользованный потенциал пространства газовых гигантов. Для государственных и коммерческих интересов, безусловно, наиболее перспективным кандидатом является самый большой спутник Сатурна, Титан.

Беспилотный зонд Гюйгенса успешно приземлился на этом странном мире в 2005 году, вернув первые снимки с его поверхности. Путешествие заняло почти восемь лет. Последующие зонды во внешнюю Солнечную систему, такие как New Horizons в 2015 году, были столь же длительными. Однако годы и десятилетия, последовавшие за этими космическими аппаратами, достижений в двигательной технике привели к сокращению времени в пути – например, использование солнечных парусов для создания небольшого, но непрерывного ускорения означало, что со временем можно было достичь более высоких скоростей. Другие заметные инновации включали ядерную импульсную двигательную установку и прогресс в области антивещества. Расстояние Титана в 1,4 миллиарда километров больше не было значительным препятствием. Эти и другие разработки теперь усиливались и оптимизировались мощными искусственными интеллектами. К 2070-м годам многие ранее непреодолимые проблемы, связанные с космическими полетами, были преодолены.

Одной из самых больших проблем, с которыми сталкивались более ранние колонисты на Луне и Марсе, было то, как бороться с радиацией. На Титане проблема устранена – благодаря защитной атмосфере спутника, которая на 45% толще земной. Из-за этого высокого давления и отсутствия радиации фактически можно передвигаться по поверхности без громоздкого герметичного скафандра, вместо этого используя только кислородную маску и тяжелую одежду со встроенными нагревательными элементами.

Здания на Титане также легче строить и обслуживать, с более простыми конструкциями, которые напоминают полярные базы на Земле. Обитатели могут несколько более спокойно подходить к обеспечению герметичности среды обитания. Хотя утечки должны быть устранены, непосредственной опасности смерти нет. Можно временно использовать простой кусок изоленты до тех пор, пока не будет завершен надлежащий ремонт. Для киборга или другого подходящего “модернизированного” человека эти экологические проблемы могут быть еще меньшей проблемой.

Очень высокое соотношение плотности атмосферы к поверхностной гравитации также значительно уменьшает размах крыльев, необходимый самолету для поддержания подъемной силы; настолько, что человек может надевать крылья и летать на большие расстояния в легком скафандре.

Первоначально население Титана ограничено учеными и другим государственным/корпоративным персоналом, но, как и на Луне и Марсе, в конечном итоге оно увеличивается и включает обычных граждан, достаточно смелых, чтобы совершить путешествие и начать новую жизнь. В течение 22-го века он становится крупным центром науки, исследований, торговли и туризма во внешней Солнечной системе.

Больше…

SQL Server базы данных дают сбой

6 июня поля типа smalldatetime в базах данных SQL-серверов будут ссылаться на 1 января 1900 года. Аналогично проблеме 2038 года, причиной этого является ограниченное число диапазона возможных элементов. На любом винтажном или антикварном компьютере, по-прежнему использующему данную систему, возникают существенные ошибки, однако, большинство из сохранившихся образцов уже находятся в музеях. Структурированному языку запросов SQL исполняется ровно сто лет, будучи коммерчески введенным в 1979 году.

«Межзвездный Зонд» НАСА достигает 1000 а.е.

«Межзвездный Зонд» (Interstellar Probe) – это очень долгосрочная и дальняя космическая миссия, разработанная Лабораторией прикладной физики Университета Джона Хопкинса (APL) и финансируемая НАСА, для исследования за пределами Солнечной системы. Это дальше, чем любой предыдущий космический аппарат. Запущенный в начале 2030-х годов, он движется к целевому назначению в 1000 астрономических единиц (а.е.), что означает в 1000 раз больше расстояния от Солнца до Земли.

Пять более ранних космических аппаратов уже прошли через гелиопаузу – невидимую границу, где солнечный ветер Солнца останавливается межзвездной средой, потому что солнечный ветер уже недостаточно силен, чтобы оттеснить звёздные ветры окружающих звезд. Это были “Вояджер I” (в 2012), “Вояджер II” (в 2018), “Пионер 11” (в 2027), “Новые горизонты” (в 2043) и “Пионер 10” (в 2057).

Однако, «Межзвездный Зонд» предназначен для того, чтобы пройти гораздо дальше, чем что-либо когда-либо прежде. Одной из его главных целей является получение обновленного изображения “бледно-голубой точки” (впервые получившего известность благодаря “Вояджеру I” в 1990 году), на этот раз с точки обзора, почти в 25 раз более удалённой. Другими словами, он нацелен на то, чтобы запечатлеть фотографию, на которой видна Земля и все содержимое гелиосферы, находясь на расстоянии 150 миллиардов километров от Солнца. Это 0,02 световых года, или около 5,8 световых дней, и примерно на полпути к внутреннему краю облака Оорта.

Миссия запускается новой мощной ракетой, “Системой космических запусков” (SLS) НАСА, которая помогает генерировать скорость, необходимую для пересечения Солнечной системы в рекордно короткие сроки. Зонд с ядерным двигателем пролетает мимо Юпитера для усиления гравитации и дальнейшего увеличения скорости. Он достигает гелиопаузы всего за 15 лет, покрывая 8 а.е. в год, что более чем в два раза быстрее, чем предыдущие зонды “Вояджер”. Затем он продолжает движение в глубокий космос, оставаясь в рабочем состоянии еще в течение 35 лет, при этом его окончательные передачи принимаются на ~1000 а.е. По пути ищутся объекты в поясе Койпера и за его пределами, включая планеты-изгои, а также распределение пыли, чтобы измерить общее количество тел в этом отдаленном регионе.

В дополнение к съёмке и изображений далекой Земли и других достопримечательностей, «Межзвездный Зонд» определяет размер и форму “пузыря” гелиосферы, окружающего нашу Солнечную систему, и подтверждает плотность атомов на кубический метр в постепенно удаляющихся местах. Эта крупномасштабная модель гелиосферы может быть экстраполирована на другие звёздные системы, раскрывая новые знания о звёздной динамике, показывая, как наша собственная гелиосфера вписывается в семейство других астросфер, и предоставляя новые подсказки о обитаемости экзопланет.

«Межзвездный Зонд» становится первой миссией НАСА, которая подробно характеризует местную межзвездную среду (LISM), лежащую за пределами гелиосферы. Более ранние исследования намекали не на одно, а, возможно, на четыре различных межзвездных облака, соприкасающихся с нашей гелиосферой. Более подробная картина нашего галактического соседства и того, как оно формирует нашу гелиосферу, формируется на основе данных «Межзвездного Зонда». Это определяет, входит ли наше Солнце в новую область межзвездного пространства с совершенно иными свойствами. Больше…

Некоторых людей уже нельзя считать биологическим видом

Среднестатистический человек сегодня имеет доступ к широкому спектру биотехнологических имплантатов и персональных медицинских устройств. К ним можно отнести полностью искусственные органы, которые никогда не откажут, бионические глаза и уши, позволяющие видеть и слышать не хуже супермена, наноразмерный мозговой интерфейс, существенно увеличивающий интеллектуальные возможности владельца, синтетическая кровь и другие биологические жидкости способные отфильтровывать смертельные токсины и позволяющие удовлетворить многочасовую потребность в кислороде за один вдох.

Наиболее отважные люди проходят через ампутацию для того, чтобы установить протезы рук и ног, которые позволяют увеличить силу и ловкость в несколько раз. Этим же пользуются и инвалиды. Искусственная кожа на основе нанотехнологий также доступна (закрывающая металлические конечности, такая кожа с виду ничем не отличается от настоящей).

Такое разнообразие различных имплантатов и устройств стало доступным благодаря постепенному техническому развитию в предшествующие десятилетия – так что теперь они воспринимаются как должное. Широкие слои общества могут позволить себе использовать биологические модификации, даже население развивающихся стран имеет доступ к ряду таких устройств благодаря экспоненциальному снижению цен на них.

Если полностью усовершенствованные люди из 2080-х перенесутся во времени на 100 лет назад и интегрируются в общество, то они будут превосходить людей 1980-х во всех аспектах. Они смогли бы бегать быстрее, чем величайшие атлеты того времени, были бы способны далеко прыгать, выживать после множественных огнестрельных ранений, существовать в самых экстремальных условиях на Земле без каких-либо проблем. Благодаря быстродействующему искусственному интеллекту, подключенному напрямую к мозгу, уровень интеллекта людей 2080 года в разы превосходит уровень даже таких гениев, как Эйнштейн или Шекспир.

Строительство Трансатлантического тоннеля

Строящийся с использованием автоматики и роботов, управляемый искусственным интеллектом, трансатлантический туннель – один из самых амбициозных инженерных проектов на сегодняшний день. Благодаря использованию гиперскоростного транспорта на основе технологии магнитной левитации, способного развивать скорость до 6500 км в час, пассажиры могут добраться по этому туннелю из Европы в Америку меньше, чем за час.

Углеродные нанотрубки и мощные геочувствительные датчики играют важнейшую роль во всей конструкции – они, например, позволяют автоматически приспосабливать конструкцию для того,  чтобы наиболее эффективно противостоять подводным землетрясениям.

Также важно отметить, что в туннеле поддерживается давление близкое к вакууму. Это позволяет сводить к нулю аэродинамическое сопротивление и достигать гиперзвуковой скорости. Стоимость всего проекта оценивается в 88-175 миллиардов долларов.

Больше…

Жара в Европе; традиционное сельское хозяйство прекращается

Знойная, жаркая погода становится ежегодным явлением.

В разгар лета температура в таких крупных городах, как Лондон и Париж, достигает более 40°C. В некоторых более южных частях континента сообщается о температурах более 50°C. Тысячи людей умирают от теплового удара.

Лесные пожары бушуют во многих местах, в то время как постоянные длительные засухи приводят к пересыханию многих рек. Испания, Италия и Балканы превращаются в пустынные страны с климатом, похожим на Северную Африку.

Этот период фактически знаменует собой конец традиционного сельского хозяйства для многих стран ЕС и предвещает создание совершенно новой системы земледелия на базе помещений с тщательно контролируемыми параметрами внутренней среды. В краткосрочной перспективе это вызывает огромные социальные и экономические разрушения, но в долгосрочной перспективе принесет пользу человечеству.

Больше…

Многие города проводившие Зимние Олимпийские игры остались без снега

Повышение температуры оказало влияние на многие бывшие объекты, проводившие Зимнюю Олимпиаду. Такие объекты стали «климатически неблагонадежными» – то есть, не в состоянии обеспечить снег на регулярной основе.

Хотя усилия в геоинженерии продолжаются уже некоторое время, ещё не удалось стабилизировать глобальный климат. Бывшие места, которые сейчас либо не подходят или вынуждены полагаться на искусственный снег вклюют Сочи (Россия), Гренобль (Франция), Гармиш-Партенкирхен (Германия), Шамони (Франция), Ванкувер (Канада) и Скво-Вэлли (США), а также ряд других оставшихся в зоне высокого риска. Помимо Олимпиады, зимние виды спорта в целом всё больше и больше практикуются внутри специальных сооружений или происходят в моделируемой среде.

Больше…

Белые медведи на грани вымирания

В период с 2000 по 2050 численность белых медведей сократилась на 70% из-за уменьшения ледового покрова, вызванного глобальным потеплением. К 2080 году белые медведи полностью исчезли в Гренландии, а также вдоль всего северного побережья Канады. Единственным регионом обитания остается внутренний арктический архипелаг.

Раннее таяние льда заставляет белых медведей выходить на сушу раньше, чем они могут приобрести необходимый жировой слой. Некоторые особи пытаются переплывать огромные дистанции, выбиваются из сил и тонут. Из-за глобального потепления медведи стали более худыми и нервными, стали плохо размножаться, повысилась смертность среди детенышей.

Больше…