Космос – Страница 2 – «Будущее сейчас»

Завершено строительство первой китайской модульной космической станции

Усилия Китая по созданию космической станции на низкой околоземной орбите (НОО) начались с космической лаборатории, состоящей из трех космических модулей «Тяньгун», запущенных в 2011, 2013 и 2015 годах соответственно. Это были небольшие экспериментальные модули, предназначенные для отработки процессов сближения и стыковки, необходимых для гораздо более крупного комплекса космической станции. Они были предназначены для краткосрочного пребывания с экипажем из трех человек.

Полноразмерная модульная космическая станция начинает формироваться в 2020 году. Она состоит из следующих ранее созданных отдельных компонентов: центрального жилого отсека, лабораторных модулей I и II, пилотируемого аппарата «Шэньчжоу» и грузового аппарата для доставки материалов и лабораторного оборудования.

Многоэтапная программа строительства завершается к 2022 году. Станция весит около 60000 кг, обеспечивает долгосрочное проживание трех астронавтов и имеет проектный срок службы десять лет.

Больше…

«Новые горизонты» завершает своё исследование пояса Койпера

В 2015 году, после девятилетнего путешествия длинною в 3 млрд. км через космическое пространство, аппарат «Новые горизонты» прибыл к Плутону. Несколько месяцев он обследовал этот регион, отправляя ценнейшие данные и снимки с этого ранее неизведанного мира и его пяти спутников. НАСА было намерено пойти еще дальше, с планами по близкому облёту в поясе Койпера объекта диаметром до 45 км. Этот этап миссии начался в 2019 году на расстоянии 43,4 астрономических единиц (а.е.) от Солнца. К 2022 году исследование завершено, и космический аппарат «Новые горизонты» отправился в сторону крайних границ Солнечной системы. Так, к 2038 году, он будет в 100 астрономических единицах от Солнца и продолжит путь в направлении созвездия Стрельца, которое включает сверхмассивную черную дыру в центре нашей Галактики.

Хотя стартовая скорость была намного выше, чем у любого другого внешнего зонда, запущенного ранее, «Новые горизонты» никогда не обгонит «Вояджер-1» или «Вояджер-2» – самых удаленных рукотворных объектов. Пролетая мимо Сатурна и Титана, благодаря гравитационному манёвру, Вояджер 1 получил преимущество в скорости. Когда новые горизонты достигнут 100 а.е., его скорость составит 13 км/с, что около 4 км/с медленнее, чем у «Вояджера-1» на этой дистанции.

Больше…

Миссия «АИДА» достигает астероида Дидим

AIDA (The Asteroid Impact & Deflection Assessment, дословно «оценка удара и отклонения астероида») – это совместный проект НАСА/ЕКА по изучению быстро вращающегося околоземного астероида из группы аполлонов – Дидима и его маленького спутника. Это первый космический аппарат, нацеленный на астероид, у которого заранее известно о наличии своей небольшой луны, получившей неофициальное название «Дидимун». Спутник имеет диаметр всего 150 метров и вращается вокруг основного астероида по орбите радиусом 1,1 км с периодом всего в 11,9 часа. В 1993 году автоматический космический аппарат «Галилео» (США), пролетая мимо астероида (243) Ида, уже обнаруживал спутник размером 1,4 км, но тогда это было сюрпризом. Аполлоны представляют собой группу астероидов, которые вращаются вокруг Земли в пределах приблизительно 1 а.е. от Солнца.

Целями «Аиды» являются:

  • изучение и демонстрация кинетических эффектов от столкновения зонда-ударника в луну астероида.
  • проверка способности космического аппарата отклонить курс летящего к Земле астероида.
  • получение новых данных о поверхности и внутреннем строении астероида.
  • получение новых данных о формировании астероидов и двойных систем.

В состав миссии входят два космических аппарата. Они должны выйти на орбиту астероида, один из них намеренно врежется в луну. Размеры основного астероида около 800 м в диаметре, его небольшого спутника около 150 м в диаметре с орбитой примерно в 1,1 км вокруг основного астероида. Дидим не пересекает орбиту Земли, поэтому отсутствует вероятность столкновения из-за эксперимента.

Зонд-импактор DART (Double Asteroid Redirection Test) весит 300 кг и сталкивается на скорости 6,25 км/с, изменив скорость спутника на 0.4 мм в секунду. Это приводит к значительному изменению взаимной орбиты двух объектов, но минимальным изменениям гелиоцентрической орбиты системы. «Аида» предоставляет данные о поверхности астероида, характеристикам внутренней структуры, ударного кратера и изменениям орбитального вращения. Зонд AIM (Asteroid Impact Monitor) оснащён навигационной камерой, тепловизором и радаром, в то время как импактор имеет камеру с 20-см апертурной ПЗС-матрицей, которая может самостоятельно направлять себя к целям. В дополнение к AIM и DART, развёрнуты 3 малых спутника формата кубсат, чтобы помочь с наблюдениями и апробировать новые научно-технические возможности, такие как межспутниковая связь в глубоком космосе. Миссия стартует в октябре 2020, подлёт к Дидиму состоялся в мае 2022 г.

Дидим пролетал мимо Земли в 2003 году на расстоянии 7.18 млн км. Он сделает ещё один близкий подлёт в 2123, на расстоянии в 5,9 млн км. Также пройдёт вблизи Марса: в 4.69 млн. км в 2144.

Космический телескоп «Евклид» открывает новые горизонты в изучении тёмной материи и тёмной энергии

«Евклид», получивший свое название в честь древнегреческого математика, является частью программы Cosmic Vision Европейского космического агенства (ЕКА) при поддержке организации НАСА, которая производит приборы для проекта и осуществляет научный анализ. Запущенный в 2020 году и помещенный во второй точке Лагранжа системы Солнце-Земля, телескоп выполняет свою миссию на протяжении шести лет, в течение которых он изучает природу темной материи и темной энергии.

Материя в том виде, в котором мы ее знаем – атомы в человеческом теле, например, – всего лишь частица общей материи изученной Вселенной. Остальная же ее часть, около 85%, является темной материей, состоящей из частиц неизвестного типа. Впервые это предположение возникло в 1932 году, но на то время не было его прямых подтверждений. Материя получила название «темной», поскольку она не взаимодействует со светом. Темная материя взаимодействует с обычной материей посредством гравитации, скрепляя галактики между собой подобно невидимому клею.

В то время как темная материя удерживает частицы между собой, темная энергия делит вселенную на части со всё возрастающей скоростью. В условиях эквивалентности массы и энергии во Вселенной темная энергия доминирует. Темная энергия является еще более неизученным явлением, чем темная материя, поскольку была обнаружена астрономами только в 1998 году (за свою работу они впоследствии были награждены Нобелевской премией в области физики в 2011 году).

Используя телескоп размером 1,2 м на длинах волн видимого спектра и ближней инфракрасной его части, Евклид обрисовывает форму, яркость и 3D-распределение двух миллиардов галактик, занимающих более одной трети неба. Он измеряет геометрию и скорость роста вселенной в самом высоком разрешении из когда-либо ранее доступных, задействовав слабое гравитационное линзирование, космологическое красное смещение и наблюдения за скоплениями галактик.

Собрав воедино все эти сверхточные измерения, мы получаем лучшее на сегодняшний день объяснение того, как ускорение Вселенной изменяется на протяжении времени, находя всё новые и новые подсказки о происхождении, эволюции и конечной судьбе космоса, а также о роли темной материи и темной энергии в каждом из этих процессов, в корне изменяя наше понимание этих все еще не изученных до конца явлений.

Запущена космическая обсерватория The Dark Ages Radio Explorer (DARE)

The Dark Ages Radio Explorer (DARE) − дословно «Радио исследователь тёмных веков» − это космический аппарат НАСА, предназначенный для изучения ранней Вселенной периода от 80 до 420 миллионов лет после Большого взрыва. Обсерватория находится на лунной орбите и использует тень Луны, чтобы прятаться от солнечного света и радиопомех Земли. Вместе с полностью выдвинутыми антеннами, размеры DARE составляют 7,5 метров в поперечнике. Высокочувствительные инструменты на борту используются для измерения красного смещения первичных атомов водорода, что позволяет более ясно понять момент начала излучения света первыми звёздами.

На ранних стадиях Вселенная была непрозрачна или «туманной». Свет уже существовал, однако он невидим для современных телескопов. Только когда были выпущены (или отсоединились) фотоны, Вселенная стала прозрачной. В период «Тёмных веков» Вселенная была заполнена водородом и гелием, реликтовым излучением, излучением атомарного водорода на волне 21 см. Звёзды, квазары и другие яркие источники ещё отсутствуют. DARE использует именно красное смещение 21 cм линии перехода нейтрального водорода (40-120 МГц) с целью обнаружения и просмотра первых вспышек. Слабое излучение − более мощный инструмент для изучения ранней Вселенной, чем космический микроволновый фон (реликтовое излучение), что предоставляет астрономам совершенно новый, ранее недоступный ракурс.

Кроме того, DARE получает сведения об аккрециях первых чёрных дыр, периоде реионизации Вселенной, первых образованиях галактик и тёмной материи.

Больше…

Обсерватория Vera C. Rubin начинает работать в полном объёме

В этом году окончено строительство ещё одной обсерватории – Vera C. Rubin Observatory, предыдущее название Large Synoptic Survey Telescope (сокращённо LSST; с англ. большой обзорный телескоп) – приступила к своему десятилетниему исследованию. Исследовательский широкоугольный зеркальный телескоп расположен на высоте 2715 м на горе Серро Pachón на севере Чили.

Среди крупных телескопов конструкция “Vera C. Rubin” уникальна тем, что обладает очень широким полем зрения: 3,5 градуса в диаметре или 9,6 квадратных градуса. Для сравнения, и Солнце, и Луна, видны с Земли как объекты, составляющие 0,5° по горизонтали или 0,2 квадратных градуса. В сочетании с большой апертурой, это позволяет ему иметь исключительно большую эффективную собирающую силу 319 м²∙градус². Другими словами, он позволяет получать большие объемы данных с огромных участков неба одновременно.

Обсерватория имеет камеру размером в 3,2 гигапикселя и может делать 200 000 фотографий (1,28 петабайт без сжатия) в год, что гораздо больше, чем может быть пересмотрено людьми. Управление и эффективный анализ данных, поставляемых системой, является одной из самых технически сложных частей проекта, требующей 100 терафлоп вычислительной мощности и 15 петабайт дискового пространства. Основными научными целями LSST являются:
– имерение слабых гравитационных линз в дальнем космосе для обнаружения характерных особенностей темной энергии и темной материи;
– картографирование малых объектов Солнечной системы, в частности околоземных астероидов и объектов пояса Койпера;
– обнаружение переходных оптических событий, таких как новые и сверхновые звезды;
– составление карты Млечного Пути.

Данные с телескопа (до 30 терабайт в сутки) становится доступным с помощью корпорации Google в виде современной новейшей интерактивной карты ночного неба.

Возвращение космического аппарата OSIRIS-REX с пробами астероида на Землю

Завершился проект по возвращению космического аппарата с пробами астероида. Исследователь реголита для установления происхождения методами спектрального анализа OSIRIS-REX (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) – это первый проект NASA по забору проб c астероида и возвращению КА на Землю. И в целом это только вторая миссия в истории по получению образцов с астероида. Запущенный в 2016 году, OSIRIS-REX является третьей миссией программы New Frontiers (Новые рубежи), вместе с Juno и New Horizons (Новые горизонты).

Зонд отправлен на 1999 RQ36, осколок карбонатной породы примерно 580 метров (1900 футов) в диаметре, который классифицируется как астероид группы Аполлона. Это околоземные астероиды, орбиты которых пересекают земную. 1999 RQ36 представляет особый интерес, потому что существует небольшой шанс его столкновения с Землей в период с 2169 и 2199.

31 декабря 2018 года аппарат прибыл к астероиду Бенну и вышел на круговую орбиту вокруг астероида. OSIRIS-REX оснащен набором специальных инструментов, в том числе камерами высокого разрешения для получения приближенных изображений поверхности. Образцы возвращаются на Землю в 2023 году. Они проливают свет на формирование и эволюцию ранней Солнечной системы, начальные стадии формирования планет и источники тех органических соединений, которые привели к образованию жизни. Общая стоимость миссии (в том числе ракеты-носителя) составляет примерно $1 млрд. долларов США.

 

Больше…

Вездеход ЭкзоМарс спускается на поверхность Марса

ЭкзоМарс (ExoMars) — совместная миссия НАСА и ЕКА (Европейское космическое агентство), разделенная на два этапа. Первая фаза миссии начнется в 2016 году, а прибудет в назначенную точку в 2017 году. Она состоит из орбитального корабля (ExoMars Trace Gas Orbiter), отмечающего источники метана и других газов на Марсе, чтобы определить лучшее расположение для проведения исследований вездеходом. Он также вмещает статический демонстрационный модуль, используемый для проверки жизнеспособности посадочной площадки.

Вторая фаза началась в 2020 году, закончится в 2021 созданием вездехода Экзомарс, построенного ЕКА. Он опустится на поверхность Марса, используя новую систему, «небесный кран», в которой четыре ракеты замедляются, как только выпускается основной парашют.

Первоочередной целью вездехода является определение любых следов жизни микроорганизмов на Марсе, бывшей или современной. Он оборудован буром, проделывающим отверстия на два метра в глубину для добычи образцов. Они передаются в миниатюрную лабораторию, расположенную внутри вездехода. Она оборудована сенсором биологических молекул, инфракрасным и рентгенологическим спектроскопами, определяющими минералогический состав образца, а также камерами.

Еще один инфракрасный спектрометр расположен в буровой системе и предназначен для изучения внутренней поверхности буровой скважины. В вездеходе Экзомарс используется радар, проникающий под поверхность земли, для поиска подходящих мест для бурения. Миссия почти полностью автоматизирована, поскольку вездеход использует передающие камеры для создания трехмерных карт местности, чтобы избежать препятствий. Он имеет срок службы в шесть месяцев, ежедневно проходит 100 метров и тестирует десятки разнообразных образцов.

Вместе с вездеходом ЕКА НАСА первоначально планировала использовать еще один вездеход, своего производства, ровер Mars Astrobiology Explorer-Catcher (MAX-C). Однако его применение было отменено в 2011 году в связи с сокращением бюджета. Остальная программа положила основу первому полету на Марс с возвращением и доставкой образцов, что произойдет в 2020-ых годах.

Изначально, запуск корабля также был запланирован на 2018 год, а посадка на Марс – на начало 2019 года, но из-за задержек в европейской и российской промышленной и научной деятельности, запуск был дважды перенесён. Итоговая дата запуска – осень 2022 года. Время в пути до Марса составляет девять месяцев, поэтому вездеход прибывает в начале лета 2023 года.

Больше…

Первый пилотируемый полёт космического корабля «Орион»

В 2023 году НАСА проводит первый испытательный полет Ориона с экипажем. Космический корабль, который в конечном итоге приведет человека на Марс — Многоцелевой частично многоразовый транспортный космический корабль «Орион» (MPCV) получил своё полное название в 2011 году. Его конструкция основывается на чертежах разрабатываемого ранее CEV (Crew Exploration Vehicle — пилотируемый исследовательский корабль). Затем корабль получил официальное название в честь известного созвездия — «Орион», который является составной частью программы «Созвездие». Космический аппарат состоит из двух основных частей: командного модуля (построен компанией Lockheed Martin) и служебного модуля (при участии Европейского космического агентства). Диаметр корабля — 5,3 метра, масса корабля — около 25 тонн. Внутренний объём «Ориона» будет в 1,5 раза больше, чем внутренний объём корабля «Аполлон». Объём кабины корабля около 9 м³. И это не общий объём герметичной конструкции, а именно пространство, свободное от оборудования, компьютеров, кресел и другой «начинки». «Орион» располагается на вершине «Системы космического запуска» (SLS) — огромной новой ракете, разрабатанной для путешествий на Луну и Марс.

Первый беспилотный испытательный полёт (EFT-1) состоялся 5 декабря 2014 года, в нём использовалась ракета-носитель Delta IV Heavy, достигнув большей высоты, чем любой космический аппарат предназначенный для использования людьми с 1973 года. «Орион» сделал два оборота на высокоэллиптических орбитах Земли перед повторным входом в атмосферу и приводнения в Тихом океане. Максимальная скорость аппарата при возвращении составила 8900 м/с.

Второй испытательный полёт, снова беспилотный, проведен в конце 2018 года, впервые запущен с помощью новой ракеты SLS. Он провёл примерно три недели в космосе, из них шесть дней облетая Луну по ретроградной орбите. Основная цель этой миссии заключалась в демонстрации интегрированных систем космического корабля предшествующих пилотируемому полёту и, кроме того, испытании высокой скорости входа в атмосферу (11 км/с) и теплоизоляции «Ориона». Груз из 13 недорогих спутников Cubesat находился во второй ступени ракеты-носителя, с которого они были направлены на изучение Луны, сближающихся с Землей астероидов и других различных космических исследований.

Третий полет происходит в 2023 году – первый с участием экипажа и ракеты SLS. Четыре астронавта на две недели выведены на отдаленную ретроградную орбиту на расстояние около 71,000 км от Луны. Эта первая за 50 лет миссия после Аполлона-17, совершённая в декабре 1972 года, когда люди покинули низкую околоземную орбиту (НОО). Экипаж вышел на лунную орбиту, провёл тесты критических событий, выполнил различные операции в соответствующих условиях.

В течение 18 лет, начиная с более ранних версий программы Созвездие (запущенной в 2005), вплоть до первого полета экипажа (2023), общая стоимость «Ориона» составила около 17 млрд. долл. Бюджет SLS с начала 2014 года до первого демонстрационного пуска ракеты в 2018 году составил 7 миллиардов долларов.

После первого пилотируемого полёта, потребуется провести ряд дополнительных запусков в последующие годы. Одна из таких миссий включает в себя облёт небольшого астероида, находящегося на лунной орбите. Помимо этого, будет установлено современное обновлённое оборудование, чтобы SLS и «Орион» стал более универсальным. Пожалуй, наиболее значительным из них станет новая конфигурация SLS, которая практически удвоит его полезную нагрузку — с 70,000 кг до внушитиельных 130,000 кг. Будут разработаны новые модули, расширяющие доступный объём среды обитания, способные продлить сроки миссии и улучшить стыковку и другие функции. Такое сочетание более крупной и более мощной ракеты с улучшенными возможностями MPCV «Орион» позволит осуществить пилотируемую миссию на Марс в 2030-е годы.

Больше…

Миссия VIPER к южному полюсу Луны

VIPER (Volatiles Investigating Polar Exploration Rover) – полярный луноход NASA для исследования летучих веществ, доставленный на поверхность Луны в 2023 году. Запуск VIPER планировался в декабре 2022 года, и заказ был распределён в рамках обычного контракта CLSP, однако это вызвало недовольство участников программы. Многие из них разрабатывали лунные посадочные платформы лёгкого класса, способные доставить на поверхность спутника десятки килограммов полезной нагрузки, тогда как масса VIPER составляет около 300 кг. Поэтому NASA выделило миссию VIPER в отдельный конкурс. 25 февраля 2020 года NASA предложило 14 компаниям, участвовавшим в коммерческой программе запуска грузов на Луну CLSP, принять участие в конкурсе по доставке VIPER на поверхность Луны в 2023 году. В рамках этой программы в 2021 году на Луну были запущены посадочные станции компаний Astrobotic и Intuitive Machines.

VIPER получит детальную информацию о расположении и объёмах концентрации льда на постоянно затенённых областях Южного полюса Луны. Это первая миссия по картированию ресурсов на другом небесном теле.

Космический аппарат размером с тележку для гольфа оснащён буровой установкой и тремя анализаторами. Нейтронная спектрометрическая система (NSS) способна обнаружить воду под поверхностью на расстоянии. VIPER разворачивает буровую установку TRIDENT, способную извлекать образцы пород с глубины до 1 метра для более подробного анализа с помощью пары бортовых спектрометров.

Луноход преодолевает расстояние в несколько километров, и собирает данные по различным составам грунта, подверженного воздействию света и температуры – в условиях полной темноты, при случайном освещении и при постоянном солнечном свете. Как только он попадает в постоянно затенённое место, VIPER работает только от батареи и не может перезаряжаться, пока не доберётся до освещённой солнцем области. Общее время его работы составляет примерно 100 суток.

Основная цель VIPER заключается в определении наилучших мест для извлечения воды с южного полюса Луны в рамках подготовки к будущим пилотируемым экспедициям. Являясь чрезвычайно ценным ресурсом в космосе, вода имеет ряд жизненно важных применений – например, в системах жизнеобеспечения и конверсии в ракетное топливо, когда она расщепляется на составляющие её элементы (водород и кислород).

Больше…